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Appendix 

Why AMMs were created 

AMMs were created to facilitate token trading on the novel Ethereum blockchain. Ethereum is 

an extension of the seminal Bitcoin blockchain in that it can execute simple programs and store 

relevant data and provide a store of wealth. Many contracts on Ethereum work together to create 

decentralized applications, aka ‘dapps,’ and these dapps are controlled by dapp equity token 

holders, who act like corporation shareholders. Blockchains have a native token used to pay its 

administrators (miners), and blockchains with smart contract ability can create an endless variety 

of tokens representing art (NFTs), dapp equity, and assets off the blockchain (e.g., wrapped 

bitcoin). Centralized exchanges like Coinbase and the Chicago Mercantile Exchange allow one 

to trade some tokens off the blockchain, like how one trades stocks on the NYSE, using a Central 

Limit Order Book (hereafter CLOB).  

On a CLOB, market makers supply two-sided limit orders (i.e., bids and asks) and update their 

limit orders via cancelations and replacements thousands of times daily. These transactions are 

costless to send and can respond to market conditions within milliseconds via programs on 

servers co-located with the CLOB exchange database server. In contrast, blockchains have a 

thousand-fold greater latency and messaging costs of dollars as opposed to zero. Lastly, miners 

have control over the sequence of transactions within a block. With price-time priority generating 

huge rewards for being first, any profitable CLOB market maker would need an off-chain 

relationship with miners, creating myriad incentive problems and removing the transparency so 

valued by crypto users.  

CLOBs are economically infeasible on a decentralized blockchain. The inherent latency and cost 

disadvantage of decentralized blockchains expose market makers to conspicuous adverse 

selection, creating large spreads that discourage liquidity traders.1  

Basic AMM Mechanics 

An AMM is an exchange enabled by blockchain technology where a smart contract calculates 

prices using an explicit formula referencing the contract’s inventory of assets. The contract holds 

crypto assets (e.g., tokens, ether) and contains code defining how users can interact with it. 

Trades can happen as long as there are positive balances in the contract liquidity pool, without 

any interaction by others. This makes it like a vending machine on the blockchain, i.e., a smart 

contract. The pool token total and relative amounts and contract logic drive its behavior.  

 Liquidity Providers (LPs) deposit tokens into a trading pool in the contract, allowing traders to 

swap one token for another from the pool using a simple constant product formula. In the 

equation below, the product of the number of tokens A and B in the pool equals a constant k.2 

 A B k =  (0.1) 

 
1 See Appendix on Why latency kills CLOBs. 
2 There are also Constant Mean AMMs, which generalize to more than two assets, and generate the same problems 

addressed here as the basic two-token CPAMM, so that Constant Function AMM is a more general term. 
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n Figure 1, we see how a trader interacts with the popular Uniswap AMM, where k=5000. 

Figure 1 

 

In the following presentation, we will use the simple two-token constant product AMM because 

the results extend straightforwardly to multi-coin AMMs and refer to it simply as an AMM. In an 

AMM, the price of token A in terms of token B is determined by their relative quantities in the 

AMM’s liquidity pool (hereafter, ‘pool’). Without loss of generality, let us use ETH and a USD 

stablecoin token for tokens A and B, as it is more intuitive to think of an asset priced in terms of 

fiat currency, like a stock or commodity price. However, the mechanism can apply to pairs 

without a stablecoin, as in the Uniswap example above. The ratio of tokens in the pool 

determines the current price of one token in terms of the other:  

 
pool

pool

USD
price

ETH
=  (0.2) 

It is common to define the constant k as the square of the variable ‘liquidity.’ Using the square 

root of k, liquidity, as the metric of the LP’s size generates a more intuitive metric of the size of 

the LP’s position. For example, the pool’s liquidity is the sum of the individual LP liquidity, 

which would not be the case for k. 

 
2k liquidity=  (0.3) 

Given this definition of pool liquidity and price, we can extend equation (0.1) to derive how 

transactions affect trades, prices, and pool token balances depending on what we consider the 

dependent variable. For example, given the AMM’s liquidity and price, the pool amounts of USD 

and ETH. 
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In equation (0.4) the priced asset pool quantity (here, ETH) is liquidity divided by the square root 

of price, and the unit of denomination in the pool (USD) is liquidity multiplied by the square root 

of price. Individual LP positions are captured by their liquidity, set at the time of deposit. The 

sum of individual LP pool balances and liquidity equals the total pool balances and liquidity. 

Prices can be derived from relative token amounts in the contract and vice versa. Prices cannot 

change without a trade that changes a pool’s relative quantities. LP actions—adding and 

removing liquidity—alter the depth of liquidity but not the AMM price or relative pool 

quantities. At the inception of a pool, an initial LP supplies tokens in a ratio consistent with the 

current price of the tokens. For example, an LP supplying 1600 USD tokens and 1 ETH token 

would imply the contract currently has an ETH price of $1600. 

The contract’s trade logic is based solely on enforcing that equation (0.1) holds after every 

contract interaction. These quantities refer to the pool, so positive amounts for ETH implies the 

trader is buying ETH, sending USD to the pool, and withdrawing ETH. For example, applying 

trades to equation (0.1) below, one can see how algebra can be applied to generate initial and 

ending price, or how one could calculate how much USD a trader will receive when he adds a 

given amount of ETH to the pool.  

 ( ) ( ) 2pool pool pool pool pool poolUSD ETH USD USD ETH ETH liquidity = +   +  =  (0.5) 

Given the definitions for USDpool and ETHpool, and price, we can generate equations like the 

amount of ETH or USD sent from the trader to the pool as a function of liquidity, starting and 

ending price, p0 and p1, are as follows. 

 

 
1 0

1 1trader poolETH ETH liquidity
p p

 
− =  =  − 

 
 (0.6) 

 ( )1 0

trader poolUSDC USDC liquidity p p− =  =  −  (0.7) 

The larger the trade size relative to the existing liquidity, the greater the price change. 

 
0

1

pool

pool

pool pool

pool pool

USD
p

ETH

USD USD
p

ETH ETH

=

 +
=
 +

 (0.8) 

Algebra gives various mathematically identical definitions of the post-trade price given the trade 

parameters and the initial price (e.g., as a function of the p0, liquidity, and USD). The price at 

the transaction’s start differs from the ending price since one token leaves and the other enters 
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the pool on any trade, changing the pool token ratio. The effective or fill price is between the 

two, specifically, the geometric mean of the start and end price. 

 

The equations above allow us to estimate the critical cost borne by the LPs addressed in the 

LAMM.  

AMMs are often referred to as part of ‘defi,’ which stands for ‘decentralized finance,’ in that it is 

controlled by a collective of people operating via pseudonymous accounts. These are ‘trustless’ 

programs in that no other agent has discretion over how the trade is processed, can change 

contract parameters, seize an account’s tokens, or censor users from the contract. Smart contracts 

are administered by a collection of pseudonymous individuals on blockchains, which themselves 

are decentralized ledgers run over the internet worldwide. Ideally, AMMs are consistent with the 

crypto principles outlined in the Bitcoin White Paper (Nakamoto, 2008): immutability, 

censorship-proofness, permissionless, transparency, and anonymity. Many AMMs have 

piecemeal deviations from the ideal in various dimensions, such as sacrificing decentralization 

for speed. Nonetheless, AMM developers generally aspire to the Bitcoin principles. 

Margin Trading Accounting Examples 

Margined accounts imply that accounts can acquire negative net asset value. Any broker who 

gives customers margin needs a mechanism for liquidating accounts close to insolvency to 

protect themselves from losses that hurt their income and firm-wide insolvency.  

The standard margin account gives customers leverage by allowing them to sell assets they do 

not have. Thus, with only ETH deposited, one can buy more ETH with USD one does not have 

and sell ETH with ETH one does not have. For example, the starting amounts on the left column 

represent two types of deposits, either in ETH or USD stablecoin. Both are worth $750. The 

ending accounts on the right represent two accounts with levered positions, both with a net asset 

value (hereafter, NAV) of $750, and the top is short ETH, the bottom long ETH. 

 

ETH price $2000

USD deposit Levered Short

item quantity $value item quantity $value

ETH 0.000 0 ETH -1.000 -2,000

USD 750 750 USD 2,750 2,750

ReqMargin 0 ReqMargin 400

MktValue 750 MktValue 750

ETH deposit Levered Long

item quantity $value item quantity $value

ETH 0.375 750 ETH 1.000 2,000

USD 0 0 USD -1,250 -1,250

ReqMargin 150 ReqMargin 400

MktValue 750 MktValue 750
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Either of the starting deposits on the left can generate long or short positions on the right using 

the following starting balances and trades: 

• USD Deposit to Levered Short ETH 

o Sell 1 ETH, get 2000 USD 

• USD Deposit to Levered Long ETH 

o Buy 1 ETH, pay 2000 USD 

• ETH Deposit to Levered Short ETH 

o Sell 1.375 ETH, get 2750 USD 

• ETH Deposit to Levered Long ETH 

o Buy 0.625 ETH, pay 1250 USD 

Below are two accounts with a required margin ratio of 20%. The one on the left has no leverage, 

and the one on the right has leverage. The leveraged account is reflected in the USD negative 

balance, meaning the trader bought ETH with 500 USD he did not have. This −500 USD balance 

represents margin lending. Note the trader cannot withdraw all his ETH because that would 

violate his margin requirement. Thus, for the margined trader to withdraw his entire NAV, he 

must sell some of his ETH back to the pool. 

 Not Leveraged Leveraged 

 

For a short position, the contract provides margin lending allowing the trader to sell ETH he did 

not have. He must buy back his short ETH position to withdraw his entire balance. 

Short Position 

 

The user who deposits ETH or deposits USD to buy ETH without leverage can withdraw his 

ETH position at any time and has no fear of liquidation if he keeps his ETH on the contract. He 

has a positive required margin, but as the value of his ETH goes to zero, his required margin 

goes to zero, so at any ETH price, his net asset value is always greater than his required margin. 
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He can withdraw the entire ETH position because the required margin constraint is evaluated 

using the portfolio balances after a withdrawal, which here would be zero. Posting USD, buying 

ETH, and later withdrawing USD would be like if he swapped USD for ETH without posting 

USD into the contract (i.e., just like a Uniswap swap of USD for ETH).  

Non-Margined Long ETH or ETH Deposit 

 

Trader Liquidation 

In traditional markets, when the customer’s net asset value is below their required margin ratio, 

they are usually notified, allowing them a day, or within the day, to liquidate their position at 

their discretion. If no action is taken, however, the broker will exit the position for the customer, 

often crudely generating additional losses via execution in a single large trade. The brokerage is 

more concerned about saving itself from the account’s insolvency, so it does not mind giving 

away some money to market makers in a clumsy execution.  

For AMMs, the liquidation process must be driven by an open process that incents outsiders to 

monitor accounts for margin violations and then liquidate them. There is no way for a smart 

contract to instigate a notification or liquidation automatically. By giving a profit when the trader 

breaches various criteria, that profit should predictably incent proper liquidations. The 

mechanism for liquidating a standard margin trading account could be as follows. 

• Anyone with an active account can liquidate 

• Liquidator’s account acquires the defaulted trader’s ETH position 

• Liquidator’s USD balance is debited from the ETH USD value  

• Liquidator gets a fee 

Liquidation would move the defaulter’s ETH into the liquidator’s account. The negative of the 

USD value of that ETH position is then credited to the liquidator, so the liquidator’s immediate 

effect does not change his net asset value (NAV). A liquidator’s fee would be in USD and 

calculated as a percent of notional that would be credited to the liquidator and debited from the 

defaulter’s margin balance. The defaulter would pay a total fee split between the liquidator and 

the equity account.  

Thus in the base case, we have the liquidator with ETH and USD balances denoted with the 

subscript q, a defaulter’s balances with the subscript d, and an equity account with the 

subscript e.  
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Suppose the liquidator takes out the defaulter when its margin ratio equals or exceeds the 

liquidation fee percentage. In that case, the defaulting account will have a positive NAV, and the 

reallocation of balances is as follows (here, p is the ETH price, and a fee is a number like 10%).  

 

The defaulter’s account could be insolvent immediately after the liquidation, either because it 

had a negative NAV, or because their margin ratio was positive, but less than the total liquidation 

fee (e.g., the fee was 10% and their margin ratio was 8%). In this case, the defaulter’s account is 

zeroed out (deleted), and the Equity balance’s USD would be credited an amount so that all 

active accounts on the AMM have positive value. 

If {NAV(defaulted Account) < 0} 

Then {Equity USD Balance Credit: USDd – ETHd*p − fee/2*abs(ETHd*p)} 

This captures the case where the defaulter’s NAV is negative after liquidation. The liquidators 

will be incentivized to liquidate insolvent accounts, as the equity account absorbs the losses from 

the defaulter’s insolvency, including the fee required for the liquidator.  

Potential equity account losses imply a positive equity account balance is needed to absorb 

potential losses. That is, the equity account balances act as an insurance fund. With an insurance 

fund all on contract, the LAMM can remain completely decentralized because no off-contract 

promise is involved. More importantly, it gives the equity owners of the LAMM an economic 

purpose for their equity tokens, just like the owner’s equity on a corporate balance sheet: it is a 

cushion for losses.  

 The liquidator assumes the new position, which implies a liquidator needs sufficient NAV so 

that he is not instantly liquidated once he acquires the position. While that is a cost for the 

liquidator, it has the beneficial property of preventing cascading liquidations. The liquidator is 

incentivized to exit his new position efficiently instead of instantly to avoid losses generated by 

price impact. The liquidity fee paid to the liquidator should suffice for the cost of this capital 

requirement and provide the liquidator with sufficient profit to exit his acquired position without 

losing money on the liquidation.  

Forcing the liquidators to acquire the defaulter’s position imposes a risk on them, as in the case 

where prices are moving quickly. The liquidation fee should be sufficient to compensate for such 

eth usd

defaulter ETHd USDd

liquidator ETHq USDq

equity ETHe USDe

eth usd

defaulter 0 USDd-ETHd*p-fee*abs(ETHd*p)

liquidator ETHq+ETHd USDq+ETHd*p+fee/2*(ETHd*p)

equity ETHe USDe+fee/2*abs(USDd*p)
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adverse movements, but not in all cases. A 5% fee would generate a loss to a liquidator who did 

not sell immediately a loss at most once a year. While it would be nice if liquidators had zero 

risk, there are costs to this—cascading liquidations—and as with everything, one must balance 

trade-offs. A liquidator can still expect to make money on average with high probability, and so a 

loss once every year or two due to market jumps should not dissuade liquidators. 

Liquidators can acquire partial amounts of a defaulting account. This is useful because a 

significant position can imply a required margin the liquidator does not have. Several liquidators 

can acquire parts of the defaulter’s position, or a single liquidator may complete the liquidation 

piecemeal.  

To avoid manipulation, one can use a moving average instead of a current price. The trade-off 

here is that the longer the time dimension of the EMA, the slower the liquidation will be, 

subjecting the AMM to more insolvency risk. A balance must be made that protects accounts 

from manipulative liquidations vs. protecting the AMM from insolvency.  

LP Capital Efficiency and Liquidation 

 

The liquidation of an LP is different because, given leverage, their greater risk to the AMM is an 

absence of a token instead of insolvency. It is helpful to see why a leveraged AMM economizes 

on capital compared to a v3 LP position. First, consider the leverage LP account’s balance sheet. 

LP account at Initial Deposit 

 

The figure above shows that the pool account balances are calculated in the standard way for an 

unrestricted range. The LP is given 22x leverage on his ETH so that 1/22 of his pool balance is 

his net ETH position, and 21/22 of his pool ETH position is reflected by a debt of 21/22 in his 

margin ETH balance. For the LP’s USD, his pool position is leveraged 19 times. The asymmetry 

is applied because the LP loses USD quicker when prices rise than it loses ETH on price 

declines, and these numbers generate an approximate symmetry where the LP runs out of net 

USD or ETH on up and down 10% price movements. 

To see how this affects the capital relative to v2 and v3 AMMs, we shall compare it to the v3 

AMM, where the top and bottom range prices are 10% above and below the current price, as 

with a 10% v3 range. 

 

LP Account

token quantity

LP pool ETHp liq/sqrt(p)

USDp liq*sqrt(p)

Margin ETHm -ETHp*21/22

USDm -USDp*18/19

Net ETH ETHp/22

USD USDp/19
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V2 vs. LAMM LP 

 

The leverage parameters are chosen above to generate virtually identical capital efficiency as the 

+/- 10% v3 range.  

Thus, not only does a leveraged LP approach generate comparable capital efficiency to a v3 

AMM, but it also facilitates the following 

• A mechanism to remove IL 

• Reduced CPU on contract  

o No looping through adjacent ranges with their different liquidity on single trades 

• Reduced memory 

o No need to store tick data relevant to apportioning fees to LPs, which is about half 

of the state variable writes in v3 

• Simplified LP aggregation making third-party vaults more viable 

While the v3 LP can never default, the levered AMM LP can. However, even at 20x leverage, the 

price would need to move either down 50% or up 88% for this to happen (assuming the LP does 

not trade).  

 

A trader with 20x leverage becomes insolvent after only a 5% price move. As the daily average 

ETH price volatility is 4%, this would generate a reckless probability of insolvency for LPs if 

they had the same risk for the same amount of leverage. However, the LP provides both ETH and 

USD in equal USD amounts at inception, unlike a trader whose leveraged or short positions are 

financed solely with USD. For example, a trader can invest 20 USD in financing a long position 

StartPrice 1,500

liquidity 1,000

v2 v3 +/- 10% Levered v2

ETH 25.82 1.20 1.17

USDC 38,730 1,987 2,038

MktVal$ 77,460 3,790 3,799

cap/v2Capital 4.9% 4.9%

v2Capital/cap 20.44 20.39



10 

 

of 100 USD worth of ETH. For an LP, he has 95 USD worth of ETH as a debt, reflected in a 

margin balance of -95, behind his 100 USD worth of ETH in the pool, reflected as a pool balance 

of +100.  

If pool positions did not change with the price, the LP would have zero risk in his leveraged 

position, as both token margin debts are overcollateralized in the pool. This is another way to see 

that the IL is real. However, the IL is subtle, which is why a 20x LP leverage generates so much 

more risk than trader leverage, where 20x leverage is not subtle. 

Given the AMM LP generates a negative token balance in one of the tokens more quickly than he 

becomes insolvent, and maintaining a positive token balance for each token in the pool is 

essential for a functioning AMM, LP liquidation focuses on this case as opposed to insolvency. 

The LP’s primary job is to supply the contracts with sufficient USD and ETH. While an 

insolvency condition applied to the LP is still functional, this addresses unlikely edge cases. 

On Uniswap v3, the restricted ranges create the possibility of running out of ETH or USD as the 

price moves. The profit incentive created by such a scenario lures in LPs, so that does not 

happen. For the levered AMM, there are two incentives. First, if the LP is hedging their position 

to remove their IL, they will not run out of either token, as they will be offsetting their pool 

token declines with net margin balance increases. This should be sufficient for most LPs.  

For negligent or irrational LPs, liquidation is needed to prevent LPs from generating a prominent 

negative net token position that could leave the contract with insufficient tokens to allow 

swapping one token for another. Thus we need not have the liquidator acquire the LP’s positions; 

transfer them from his pool position to his margin balance. The liquidator can apply the trader 

liquidation mechanism if the former LP violates his margin requirement as a trader after 

liquidation. Indeed, on the blockchain, this could happen within a single block. 

For an LP liquidation, then, the rule is as follows. Given the LP has too much or too little of one 

of the tokens, he is then subject to LP liquidation. The liquidator then transfers the LP’s pool 

balances to his margin balances, sets the LP’s liquidity to zero, and takes a fee. 

For example, consider the case where an LP starts with the standard leverage described above. 

He has negative margin balances reflecting how many tokens he borrowed to put into the pool. 

LP on instantiation, ETH Price 1500 

Liquidity = 852 

 

Assets quantity $ value Net quantity $ value

Pool 852           ETH 1.00 1,500       

  ETH 22.00 33,000 USD 1,737       1,737       

  USD 33,000    33,000

Margin

  ETH 21.00 31,500

  USD 31,263 31,263

Total Assets 3,237 Net Asset Value 3,237       
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Now assume the price of ETH fell, causing the LP’s net ETH position to go below zero, which is 

the liquidation trigger.  

LP after Price Change from 1500 to 1350 

No trades in this account 

Liquidity = 852 

 

After liquidation, the LP’s account would become a standard non-LP account and look like the 

account below [I am excluding the fee here, but it is a trivial debit from the ex-LP to the 

liquidator]. 

Ex-LP Account after Liquidation 

Liquidity = 852, i.e., not an LP 

 

 

LP Vaults 

Given that the LPs in a leveraged contract only differ in their liquidity, providing a vault 

aggregating LP positions is much simpler for someone with a comparative advantage. With v3, 

the different ranges implied by LPs depositing at different times would generate complex optimal 

tactics. With the leveraged v2, the LPs have the same objective regardless of their initial price 

deposit. The vault manager would always be to arbitrage the AMM price with a centralized 

CLOB price based on their current and initial ETH net position. Facilitating such a service is 

valuable because while it is straightforward to automate an arbitrage algorithm, there are high 

fixed costs for those unfamiliar with programming. Many would be interested in providing 

liquidity but find creating a blockchain auto-bot beyond their capabilities. It is the sort of service 

suitable to a division of labor and subject to economies of scale.  

Assets quantity $ value Net quantity $ value

Pool 852             ETH 2.23 3,001

  ETH 23.23 31,246   USD 17 17

  USD 31,246    31,246

Margin

  ETH 21.00 28,245

  USD 31,263 31,263

Total Assets 2,985 Net Asset Value 2,985       

Assets quantity $ value Net quantity $ value

Pool 0 ETH 2.23 3,001

  ETH 0 0 USD 17 17

  USD 0 0

Margin

  ETH 2.23 3,001

  USD 17 17

Total Assets 2,985 Net Asset Value 2,985       
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Economies of scale might sound like dangerous centralization, but as the contract takes in ETH 

and USD, outsiders can still arbitrage the AMM outside the fee (e.g., 0.3%) if it posts ridiculous 

prices. The vault manager still has the correct profit-maximizing incentive vis-à-vis the contract. 

Further, his customers should see centralization as an existential risk, as with mining farms on a 

blockchain. While a single agent may have the correct incentives, including creating an 

infrastructure diversified across servers worldwide, outsiders can never be sure there are no 

attack surfaces within his operation.  

Prudent LPs should be wary of letting too few LP aggregator vaults administer the AMM to 

mitigate censorship or key-man risk. The key to incentivizing market competition is not the 

number of insiders but free entry by outsiders.3 

Why Latency Kills CLOBs 

Today's most efficient and liquid exchanges are central limit order books (CLOBs). It is a 

computerized system that aggregates and matches buy and sell orders for a particular financial 

asset, such as a stock, currency pair, or commodity, in real time. In a CLOB, market participants 

can place their orders to buy or sell a specific asset, and these orders are then listed in the book 

according to their price and time priority. The system automatically matches buyers and sellers at 

the best available price, filling limit orders that arrive first (i.e., price-time priority). Orders 

outside the current market price sit on the book as resting limit orders, available for traders until 

they are canceled. 

A Limit Order Book 

 

While these represent the gold standard, they require a degree of low latency (i.e., speedy) that is 

only attainable because they are centralized (ergo, CLOB and not LOB). This allows market 

makers to physically place servers running their market-making algorithms next to the exchange 

 
3 See the Theory of Contestible Markets 
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servers, allowing communications within milliseconds. Any decentralized trading platform 

cannot directly compete with these platforms as a price discovery mechanism. 

To understand why a CLOB cannot work on a blockchain, it is helpful to understand the 

economics that drives its equilibrium. A CLOB has three types of traders: uninformed, informed, 

and market makers. The informed invest in data, models, and hardware to identify temporary 

mispricings and use their comparative advantage to snipe stale limit orders. The uninformed are 

ignorant for rational and irrational reasons: they may want to buy a car (liquidity traders) or are 

delusional and trading on irrelevant information (unintentional noise traders). As informed and 

uninformed traders do not show up simultaneously, market makers arise to provide liquidity 

continually by posting resting limit orders to buy and sell. 

In equilibrium, all groups generate benefits equal to their costs. The informed trader’s costs—

investments in hardware and statistical algorithms—are balanced by revenue from adversely 

selecting stale market maker limit orders. Uninformed traders pay the market maker by crossing 

the spread, benefiting from convenient, quick trading. Market makers post knowing they will 

trade with both types of traders, setting limit orders such that the revenue from uninformed 

balances that they lose to the informed. 

There are many scenarios where low latency is costly, but one applied to a market maker 

providing resting limit orders should suffice. A market maker places a two-sided order to buy or 

sell 100 shares of XYZ stock trading at a bid-ask price of $20.17-$20.18, its current bid price, 

$20.17. Assume the stock will move up or down $0.05 before you can cancel that order. If you 

get filled, it will only be because it is now trading at $20.12-$20.13, meaning you bought at 

$20.17 and can sell now at $20.12; you lost $0.05; if the price went up $0.05, you would 

probably not be filled on your $20.17 order to buy. This is called ‘adverse selection,’ where 

conditional upon getting filled, you paid too much or sold too low. It generates a loss profile for 

market makers like for those selling straddles or a liquidity provider’s impermanent loss. 

The effect of higher latency on a central limit order book is a classic example of Akerloff’s 

‘Market for Lemons’ (Quarterly Journal of Economics, 1970).4 In that paper, he analyzes markets 

where parties with asymmetric information separate, so the only viable transactions are those 

with a negative value, and the market collapses (i.e., no trades). 

The lemon’s problem applied to limit order books is the following. High latency leads to market 

makers suffering higher adverse selection as it amplifies the relative speed advantage of 

informed traders, causing market makers to increase their spreads. Higher spreads discourage 

uninformed traders. With fewer uninformed traders, the market maker widens his bid-ask spread 

further to protect against adverse selection by the informed traders by making more profit per 

uninformed trade. This discourages more uninformed traders, creating a positive feedback loop 

until none are left. 

 
4 In this application, the market maker trading with informed traders generates a loss, like a lemon car, hoping to 

offset this with his trades with ‘peach’ cars (gains). In 70’s slang, a ‘lemon’ is a bad type, as opposed to a good type, 

e.g., a ‘peach.’ 
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Another way to think about the necessity of liquidity traders focuses on the zero-sum nature of 

trading without them. With no liquidity traders, the remaining participants are then playing the 

unattractive game of trying to outsmart and out-speed others who have made the same 

commitment. The Milgrom-Stokey ‘no-trade theorem’ (Journal of Economic Theory, 1982) states 

that if all the traders in the market are rational, all the prices are rational. Thus anyone who 

makes an offer must have valuable and accurate private information, or else they would not be 

making the offer. Similarly, Grossman and Stiglitz’s ‘Impossibility of Informationally Efficient 

Markets’ (American Economic Review, 1982) shows how without liquidity traders, no one has 

an incentive to put information into markets because the other rational traders infer what he 

knows via his market demand. There are no trades because every order is presumed to be 

informed and thus unprofitable for the other side. 

A deficiency of liquidity traders creates a positive feedback loop that causes markets to 

ultimately unravel. There will not be enough liquidity traders to support an active set of market 

makers, who need the uninformed retail flow to offset their losses to the informed traders. The 

high spreads and meager volume on decentralized limit order book exchanges are consistent with 

this result (e.g., Augur). 

One can imagine the layer 2 blockchains will eventually become fast and secure, preventing this 

problem. However, even in this case, miners or validators can sequence transactions with some 

discretion. It takes 60 milliseconds for light to travel from Tokyo to San Francisco, creating a 

large lower bound to this discretionary time window. Successful market makers on modern 

CLOBs have reaction speeds of 5 milliseconds, implying the feasibility of front-running such a 

system with impunity (see Aquilina. Budish, and O’Neill, 2020). 

A CLOB has price-time priority, so it fills limit orders first by price, and within a given price 

using first-in-first-out logic. Even without a minimum tick size, the sequencers could front-run 

limit orders by posting orders conditional upon the price in the new orders. There is no way for 

the layer 2 validators to agree on the time sequence of transactions if it is configured to prevent 

censorship, which would require a globally distributed set of validators. Given the 

disproportionate advantage of being first on limit order books, the unavoidable sequencing 

discretion makes transparent competition impossible, enabling and encouraging corruption. 

Low-latency chains like Solana, meanwhile, are centralized, which invariably leads to corruption 

via Acton’s Law. This centralization is not obvious, as many have more validators than Bitcoin or 

Ethereum (e.g., EOS has 21), but this Nakamoto coefficient is meaningless because the 

validators on low latency blockchains have to work together, and they are invariably controlled 

by a central agent. When a blockchain representative proclaims a bald-faced lie about a 

foundational crypto principle, its developers fall down the slippery slope, leading to more lying 

and, ultimately, a cesspool of deception. In markets dominated by unaccountable insiders, we 

should expect every sort of malicious trading tactic (e.g., FTX pumped its Serum token via its 

low-latency Project Serum exchange on Solana). This leaves blockchain CLOBs only for tokens 

with no alternatives, like in markets for NFTs and shitcoins. 
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Convexity Cost Inevitability 

 

 

Convex payouts have a positive second derivative, while concave payouts have a negative 

second derivative. Concave payouts are often called negative convexity for this reason. Options 

have positive convexity for those who own them (aka, buy them, are long), so those who sell 

(aka ‘short’) options thus have negative convexity.  

Jensen’s inequality states that convex functions have ‘time value’ in that their expected value is 

worth more than their current ‘intrinsic’ value.  

 ( )  ( )E f x f E x    

To see the inherent cost of negative convexity, consider a derivative valued at the square of the 

underlying price, p2. This derivative would be an inefficient mechanism for generating convexity, 

which is why active options markets use strike prices instead of squared prices, but it makes for a 

simple example.  

The delta of this security is its derivative, 2p, so a seller of this option would hedge it by going 

short 2p units of the underlying. If p=10, then the seller would hedge by shorting 20 units. The 

net payoff space would then be as follows: 

 

The naked option seller is exposed to payouts of -21 and +19, while the hedged seller’s payout 

volatility in the far right column is zero. It does not affect the expected value of the seller’s 

payout. 

In the Black-Scholes equation below, V is the option value, S is the stock price, r is the risk-free 

interest rate, and  the volatility. 

hedge

p p2 p2 pnl pnl Net

initial 10 100 0 0 0

up 11 121 -21 20 -1

down 9 81 19 20 -1



16 

 

2
2 2

2

1
0

2

V V V
S rS rV

t S S


  
+ + − =

  
 

The four terms in this equation can be interpreted as follows. 
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The equation shows the option’s time decay (theta) plus its convexity return (gamma) equals the 

riskless return from a long position in the derivative and a short position and a hedged amount 

(dV/dS shares) of the underlying. Note that 
V

S V
S

 
− 

 
is the cost of the initial position: the 

hedge value is the stock price times the option delta, 
V

S
S




, minus the option price, V.  

We can see the intrinsic connection between theta and convexity. If we ignore the financing costs 

by assuming they are zero, we see that theta equals the negative value of the convexity, 

consistent with Jensen’s inequality above. Theta, time decay, is required for an options market 

equilibrium because the convexity costs afflicting option sellers must be offset so that their net 

profit is zero, not negative.  

2
2 2

2
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V V
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t S


 
= −

 
 

This derivation assumes transaction costs are zero, so it is fundamental. If hedging could remove 

hedging costs, options would have no time premium, but this never happens, highlighting the 

ineradicable nature of convexity costs. Convexity shifts the payoff space around; it doesn’t 

reduce the expected cost of negative convexity.   

Hedging is still recommended for option sellers because it decreases indirect costs and risks. A 

hedged position requires less capital, and capital has an interest expense. For example, suppose a 

derivative has a payoff space of {+19, -21}, with 0.5 probability for an expected value of -1 to 

the seller. A seller will need at least 21 units of capital. Hedging this asset can reduce this payoff 

volatility to a certain -1, in which case the seller needs only 1 unit of capital. This illustrates how 

hedging reduces risk and capital requirements for hedgers but not the average cost of this hedge. 

Uniswap LP Profitability 

 

I will start first with a basic derivation of IL for a constant product AMM. I will apply this to the 

ETH-USD pair, but these formulas apply to any token pair.  
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We start with the formulas for ETH and USD pool tokens. Liquidity is both an intuitive and 

technical term within the AMM, and p here would apply the price of ETH in terms of USD.  

pool t

pool

t

USD liquidity p

liquidity
ETH

p

= 

=
 

The value of this LP pool position at any time is given as follows. 

( ) pool pool tValue LP USD ETH p= +   

Substituting for the token amounts given the above pool equations, we get can derive this simply 

in terms of the price and liquidity for an LP.  

( )| , 2t t t t

t

liquidity
V LP p liquidity liquidity p p liquidity p

p
=  +  =    

Taking the derivative of the LP’s pool value with respect to the price, we get the delta 

t

V liquidity
delta

p p


=  = =


 

The derivative of the delta, or second derivative of the pool value, is thus 

2

2 3/22

V liquidity
gamma

p p p

 
= = =  = −

  
 

Given this gamma in the AMM pool, we can apply this to the Black-Scholes formula for 

convexity cost (gamma/2 times variance), which gives us 

2

2 2

2 4

t

t

liquidity p
ConvexityCost p




 
=   =  

The convexity cost equals the option premium via an equilibrium argument where profits are 

zero: if they were positive, it would not be an equilibrium because sellers would enter the 

market; if profits were negative, sellers would exit. This argument is used in the famous Black-

Scholes equation.  

This method of estimating the convexity cost is to determine the option value of an option.  

      Convexity Cost option premium=  

This does not mean a convexity payout equals its cumulative convexity cost in every case. A 

single option payout represents one observation like a draw from a normal distribution reflects 

the distribution.  

 ( )  , optionPayoutATM straddle payoff N optionPremium =  
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For an AMM LP position, which is like an ATM straddle, the convexity cost is the expected IL 

instead of an actual IL. This is also the IL a good market maker should approximate, in that good 

LPs hedge their delta risk, and hedging does not change the expected IL, but minimizing its 

variance reduces capital costs. 

( )   Convexity Cost E IL=  

With the convexity cost function for an AMM, we can apply the daily volume and liquidity data 

from Uniswap’s pools and the actual daily volatility for the assets to calculate the average daily 

profitability for the LPs of these pools. I used daily liquidity and volume data from two of the 

most prominent Uniswap pools. I calculated the daily variance using the daily price and minute-

downsampled price data daily. I then present the monthly average daily data to see if it’s 

trending. This is in the table below. 

Uniswap ETH-USDC Pool Profitability 

Monthly data contain average daily values. Average daily volatility was taken from down-sampled minute 

data. Gross Margin is (revenue-convexity cost)/revenue. Liquidity and volume data are from Uniswap’s 

Ethereum mainnet. Data through March 21. 

 

 

This chart shows that LPs have consistently lost more money via their IL than they made in 

trading fees. Worse, there is no trend.  

The best explanation for the persistence of LPs despite losing money is that they are not 

calculating the option cost. This would explain the lack of growth, as smart money is not 

entering this new market.  

daily 0.3% Pool 0.05% Pool

volatility price volume liquidity grossMarg volume liquidity grossMarg

202107 4.5% 2,113 102,043 16,055 -27% 339,403 10,589 -55%

202108 4.3% 3,099 158,558 22,086 -22% 428,440 12,265 -51%

202109 5.2% 3,338 129,893 11,990 -18% 454,525 8,102 -37%

202110 4.0% 3,820 108,169 16,262 -27% 476,796 12,518 -31%

202111 3.7% 4,444 92,952 15,472 -18% 681,058 23,932 -60%

202112 4.1% 4,048 144,264 20,346 -37% 860,335 25,996 -74%

202201 4.6% 3,054 111,027 11,377 13% 822,799 24,070 -57%

202202 4.5% 2,869 91,026 11,836 -20% 808,409 22,931 -61%

202203 3.5% 2,877 67,735 14,221 -13% 637,949 27,195 -35%

202204 3.1% 3,170 65,969 16,585 -16% 625,817 27,260 -20%

202205 5.0% 2,185 119,423 12,745 -8% 817,706 20,101 -22%

202206 6.3% 1,390 121,279 10,350 1% 596,718 11,653 -15%

202207 5.4% 1,358 83,713 11,267 -19% 581,017 15,301 -41%

202208 4.4% 1,699 63,243 10,884 -17% 579,512 18,213 -22%

202209 4.6% 1,484 72,103 12,552 -22% 422,743 14,226 -37%

202210 2.9% 1,367 35,415 15,123 -19% 359,467 23,462 -10%

202211 5.2% 1,296 73,024 11,587 -52% 603,722 18,567 -56%

202212 2.5% 1,237 14,701 12,668 -107% 223,774 27,207 -55%

202301 3.0% 1,456 27,876 10,137 -8% 375,912 31,343 -45%

202302 2.8% 1,624 26,807 10,844 -11% 432,315 30,993 -18%

202303 4.4% 1,586 40,739 8,765 -64% 730,904 27,614 -68%

average 4.2% 2,358 83,331 13,483 -24% 564,729 20,645 -41%
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Why are LPs so Stupid? 

One reason the LP convexity cost is not appreciated is that it is not a direct cash charge. Instead, 

it’s cost relative to a pair of assets, as opposed to a simple USD value, which is uncommon. 

Consider the LP’s pool value, which can be represented as a linear function of the square root of 

the ETH price.  

( ) 2t tValueLP p liquidity p=    

In comparison, the value of their initial deposit is a linear function of price, given an initial 

deposit of x USD and y ETH. 

0        Initial LP Deposit Value in USD x y p= +   

The value of the initial deposit and the LP function are equal initially. However, as the LP value 

function is concave, and the initial portfolio value is linear, we know the LP’s future pool value 

will always be less than the initial portfolio pairs. The value of the LP position as a function of 

the ETH price is an increasing concave line tangent to the value of the LP’s initial deposit, as 

seen in the figure below. In equilibrium, fees should compensate for this predictable loss.  

The daily IL is imperceptible without proper accounting. For example, the daily ETH price 

volatility is around 4%, and half of an LP’s pool value is from ETH, while the IL averages 

around 0.03%. Further, the benchmark is ambiguous. When the price of ETH rises, the LP’s pool 

value also rises (segment D in the figure below), just less than it would have if not in the pool 

(segments C+D). When ETH prices decline, the pool position declines (A+B), but so would their 

original portfolio (A), though less so. To appreciate the option they are implicitly selling, they 

would have to look at their position relative to an initial position that most only remember at its 

USD value.  

IL Cost Superficially Ambiguous 
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LPs ignorance is not remedied by more academic studies of LP profitability. Almost all focus on 

the realized IL of actual LPs assuming none of them hedged. This is like testing option returns by 

looking at the returns on options independent of the hedge, which no institutional option market 

maker does (I used to work for one). For example, a significant study by Topaze Blue (Loesch et 

al., 2021) found that Uniswap pools generated $199.3M in fees over a period that incurred 

$260M in IL, and 49.5% of LPs lost money. Such a takeaway obscures the profound fact that the 

LPs lose money because it is tempting to think that those LPs with clever tactics were among the 

half that made money, and all one has to do is figure out what those tactics are.  

Realized ILs will equal the convexity cost over many years, but the realized IL will have much 

greater volatility in small samples. This is related to why option sellers hedge their positions: 

reduced volatility reduces risk, which reduces required capital. If option market makers hedge 

their portfolios, those researching option expenses should use estimates as if the option was 

hedged. That is implicit in comparisons of implied to future volatility. 

Why Realized IL is a Bad Metric  

To help see the relative efficiency of these two approaches for estimating IL, I estimated the 

small-sample properties of both approaches using a Monte Carlo simulation. As I present about 

600 daily Uniswap pool observations in my Uniswap LP profitability table above, I generated the 

price paths over 20 periods of 30 days to get a sense of the sample volatility. I recorded the mean 

and volatility of the two ways of measuring IL: realized IL based on starting and ending price, 

and convexity cost based on daily volatility.  

Monthly Realized IL in Monte Carlo  

   30 30 30 0 0 30IL USD ETH p USD ETH p= +  − +   

I assumed fixed liquidity and had an initial price of 100. As I am interested in comparing one 

approach to the other, the specific numbers are irrelevant as long as they are the same for both 

approaches. We are looking at the relative differences generated by these IL estimation methods. 

The monthly realized IL in the samples can be simplified to the following (they are 

mathematically identical). 

( )
2

30 0

0

p p
IL liquidity

p

−
= −   

Monthly Convexity Cost 

For the convexity cost approach, I used the basic formula derived above, that is: 

2

4

liquidity p
ConvexityCost

 
=  

Applying this using time series of price and volatility generated the following formula for each 

monthly estimate.  

https://arxiv.org/ftp/arxiv/papers/2111/2111.09192.pdf
https://arxiv.org/ftp/arxiv/papers/2111/2111.09192.pdf
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These two formulas were applied to one million simulations to estimate means and standard  
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Monte Carlo Estimation of Uniswap LP Costs 

ETH minute-down-sampled data from July 2021-March 2023 were used to estimate daily 

volatility. These daily volatility estimates generated a heteroskedastic random price time 

series. 20 sets of 30-day realized IL and convexity costs. Both approaches assumed a 

liquidity=1000 and an initial price of 100. 

 

The absolute numbers do not matter, but the relative ones do. The results above show these 

approaches have approximately equal mean estimates for the IL, as expected. However, the 

sample IL approach had a three times larger standard deviation. Intuitively this makes sense 

because the convexity cost approach uses daily prices to estimate the next day’s price variance, 

information any hedger would use when managing their convex positions. In contrast, the 

realized IL approach uses only the start and end prices. As with many options results, many ways 

exist to prove and intuit these findings. results. The bottom line is that the convexity cost formula 

dominates the sample IL approach to estimating expected IL (something a good hedge can lock 

in).  

There should not be much doubt that LPs are consistently losing money. Those LPs fortunate not 

to lose money in the TopazeBlue study were simply random draws that were below average 

instead of clever.  

I don’t want to pick on TopazeBlue. Still, if one of the most prominent studies of ILs is 

misleading, it is understandable most LPs, who are not quants, will not see that LPs lose money 

outside of random shocks that obscure this loss when not hedged. The lack of LP profitability 

also explains why well-capitalized groups are not adding liquidity to these AMM pools.  

Impermanent Loss Equals Arbitrage Profit 

 

Impermanent loss is the loss due to adverse selection in an LP’s pool position, where the pool 

loses the token with a relative increase in value and gains the token with a relative decline in 

value. We capture this by comparing the LP’s token portfolio composition to its initial token 

portfolio quantities, both valued at the new price. 

   1 1 1 0 0 1IL USD ETH p USD ETH p= +  − +   

We can substitute for these terms using the equations that define an AMM to generate a more 

primitive representation as a function of liquidity, starting and ending price, p0 and p1.  

   1 0 1 1 0IL USD USD p ETH ETH= − + −  

ImpLoss convCost

Mean 1,547 1,604

Stdev 2,302 794
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This simplifies to 

( )
2

1 0

0

p p
IL liq

p

−
= −   

The profit generated by an arbitrageur is calculated using the amount of the asset traded; here, 

the change in ETH from the trader’s perspective times the difference between the ending price 

and the arbitrageur’s trade price. 

( )1ArbitragePnL ETH p fillPrice=   −  

( )1 1 0

1 0

1 1ArbitragePnL liq p p p
p p

 
=  −  − 

 

 

Which, via algebra, generates the negative of the IL listed above.  

( )
2

1 0

0

p p
ArbitragePnL liq

p

−
=   

This is one way to intuit that the IL is an actual cost. There are several other ways to see this, 

such as the note above in LP leverage and liquidation that finds leveraged LP position is 

generated by its IL.  

Financing Rate Fraud 

The funding rate mechanism used to link perp prices with spot prices is a farce in that it does not 

and cannot tie a synthetic price with a spot price via arbitrage, and in practice, it is used to 

defraud its users. As a practical matter, the perp price is a Schelling point in that its obvious 

target is the spot price, and the funding rate is just there to make traders feel comfortable that it is 

not merely a Schelling point. The fact that there is a vague relation to an equilibrating 

mechanism is good enough for most traders, as they are happy to use centralized platforms like 

BitMex and DyDx. As in those cases, many users are happy to have access to perps as long as it 

seems fair. 

Given the development of stablecoins, one can trade ETH for USD directly, which allows 

arbitrage and makes this funding rate mechanism an anachronism. With a leveraged AMM, one 
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can let natural arbitrage set the price: when the LAMM price is too high, people will sell ETH to 

the pool to get USDC; when the price is too low, they will sell USDC and get ETH.  

One can forgive the perp funding rate scam as its foundational white lie facilitated a much-

needed market. In 2016, shorting or leveraging bitcoin was impossible on standard exchanges. 

All one could do was swap one token on the hybrid exchange EtherDelta. There were no 

stablecoins or wrapped Bitcoin. BitMex, a centralized unregulated exchange that only took 

bitcoin deposits, created the first popular perpetual swap, aka ‘perp.’ 

Instead of an expiration date and settlement in a perp market, a perp anchors its price to the spot 

via a funding rate mechanism. When the perpetual contract’s price exceeds the spot price, the 

story is that this implies longer than short demand. The long traders pay short traders a fee 

proportional to this price premium to equilibrate the market. Crypto funding rates prevent 

continuing divergence in the price in perp and spot markets. 

The perp premium is the percent difference between the perp and spot prices. The spot price 

could be from external markets like Coinbase, or for centralized perps, from spot markets on 

their exchange: 

PerpPremium = PerpPrice/SpotPrice - 1 

The funding rate is like the future expiring once daily, as this premium is applied to 24 hours 

based on the perp premium. One can apply it to 8-hour windows or anything else, but the 

standard is to apply the simple premium above and divide it by the number of periods within a 

day. 

For example, suppose you short a BTC perpetual future trading 10% above the underlying index 

all day. In that case, it’s perp premium—then you will receive a total funding payment of 10% 

over that day to compensate for the fact that, unlike traditional futures markets, there is no expiry 

or settlement, as it is perpetual. This sounds reasonable, but to understand why this is not, you 

must first understand the theory of how funding rates work in swap markets or how basis rates 

work in futures markets. 

The basis in futures markets acts as a funding rate in swap markets, defined as the difference 

between the futures and spot prices. The chart below shows the horizontal time axis moving from 

a current futures price to its delivery/expiry date if the black line represents the current spot 

price. 

 

https://www.blogger.com/blog/post/edit/7905515/3249564733705603621
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The basis is the difference between the futures and spot price. It can be positive or negative 

depending on whether the futures price is above or below the spot price. The funding rate is 

implicit in the amortization of the basis over time, in that, at expiration, the spot price equals the 

futures price, so the basis is sure to be zero at that time. 

There is no basis for swap markets; a funding rate is applied daily, acting precisely like the basis 

in futures markets. Swap accounts trade at spot prices, facilitated by broker margin. Here the 

basis goes from being implicit to explicit. 

LongSwapPnL  = Notional (p(t+1)/p(t) - 1 - FundingRate) 

Funding rates in prime broker swap accounts are charged daily and determined independently of 

the spot prices, like how a bank sets interest rates. For equity swap accounts common among 

hedge funds, they are generally a fixed markup to the Fed Funds rate, such as adding 25 basis 

points when a customer borrows USD to go long and subtracting 25 basis points when a 

customer goes short (which lends USD to the broker). 

Thus far, the similarity of swap funding rates and the futures’ basis to the perp funding rate 

seems plausible. Two academic articles are generally referenced when presenting perps. The first 

is by Gehr (1988), which describes how gold was traded at the Chinese Gold and Silver 

Exchange Society of Hong Kong (CGSE) in the 1980s. This was when trading was not possible 

around the clock, and there was no internet, so a price had little volatility outside the trading day. 

The CGSE was unique because its futures market was undated, i.e., perpetual. The market settled 

daily and held a 30-minute auction to determine the funding rate. Those long gold compare the 

cost of paying storage and interest on the spot vs. the funding rate; those short gold futures take 

delivery if they feel the funding rate is too low. This funding rate was added to the spot price to 

create a new closing price used in the subsequent day’s pnl. 

The effect on prices and cash flows in the CGSE futures market was as follows. If the market 

price closed at 100.00, and the funding rate was determined to be 0.01% over the next day, the 

cost basis for the next day’s PNL is 100.01. If the price stayed constant at 100.00 each day, the 

longs would lose 0.01 because the daily pnl would be 100.00 – 100.01 on a long position, where 

100.00 is the spot close, and 100.01 is the previous day’s futures close. The traded price would 

never be 100.01; it would just be used in the daily calculation of the trader’s pnl on the next 

trading day. 

Nobel laureate Robert Shiller (1993) proposed a perpetual futures contract for single-family 

homes. Unlike a stock index or a commodity, the underlying asset, housing, is challenging to 

create into a futures commodity because it is not homogeneous like a commodity. Quality varies 

considerably by location and structure, creating a lemons problem. Shiller proposed a rental 

index to create a rental return proxy for a housing price index. He proposed a statistical model 

that correlated with real estate’s average rental return, net of depreciation. This rental return 

would then be paid by the short to the long. 

s(t+1) = f(t+1) - f(t) + d(t+1) – r×f(t) 
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In the equation above, s is the daily margin change in a trader’s account;  f is the perpetual 

futures price, r is an interest rate adjustment, and d is determined outside the market. While this 

is interesting, the difficulty in generating a robust rental index for d is probably why this has 

never been implemented. The market was supposed to trade at a spot price that did not reflect the 

daily funding charge, d, only its present discounted value. However, rental income, like 

macroeconomic profit, is challenging to estimate via macroeconomic indicators, and most 

macroeconomic models work poorly out-of-sample, generating considerable uncertainty for 

potential traders. 

Nonetheless, the estimation method implied that this funding rate would move slowly, like 

interest rates. There was never the suggestion that the market price reflects the spot price and the 

funding rate, as there is no spot price in this hypothetical, never-realized market. 

The perp-premium charge is like Gehr’s funding charge, added to the market’s spot price after 

trading. It is also like the d(t+1) term in Shiller’s model. Thus, at 30k feet, the connection 

between the perp premium and the funding rate seems consistent. However, the average 

synthetic/spot price ratio is not determining the funding rate in either of these mechanisms, as it 

is for perps. 

In crypto perps, the modal daily funding rate and perp premium is 0.03%, which annualizes to 

11%. This is a significant funding rate compared to interest rates that have been near zero over 

the period where perps have existed. A 0.10% perp premium would imply a massive 36.5% 

funding rate paid by longs to shorts. The average transaction costs for the most liquid US 

equities, which are more efficient than any crypto market, are estimated at around 0.1%. This is 

consistent with Gemini tic data that show a 0.15% standard deviation in the price change from 

one trade to the next (reflecting a bid-ask bounce). 

The perp premium incenting trades at any instant is below the transaction cost, given not just the 

fees but gas and the effective bid-ask spread, which is paid twice over a round trip. If one were 

frequently trading, as the price-setting arbitrageurs tend to do, extreme funding rates would be 

less than a round-trip in transaction costs. For example, a 50% funding rate would imply a 

0.006% funding payment for a one-hour position, considerably less than their transaction costs. 

Additionally, the perp premium applied to longs and shorts is based on the average perp premium 

in the future. Even if one could know exactly one’s perp premium at the time of trade and 

transaction costs were zero, it would tell the long-term traders little about what it would be in the 

future. If one targets positions held for a month, the current perp premium at the trade time is 

irrelevant. 

Supposedly, with all the perp premium’s economic insignificance for motivating short- and long-

term traders, we expect the market to determine the funding rate by inspiring people to buy and 

sell perps based on current perp/spot premium movements of 0.02%. This is why it is a farce; it 

is absurd. 

This leads to why the perp premium is consistently positive (payments from longs to shorts) and 

frequently rises to 40% after crypto prices jump, as it did this week. Market makers dominate 
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price setting, and all perp markets are effectively centralized and run by unidentified and 

unaccountable coalitions of insiders. They can target 0.03% or 0.13% above the current spot 

index. No independent auditors regulate an immutable tape of trades with objective time stamps 

(as the once-perceived compliance-oriented FTX demonstrated). Anything that can be gamed 

will be gamed, and perp markets can be gamed. 

On average, market makers on standard CLOBs have net zero positions on their assets. On perp 

exchanges, however, the market makers are generally short because it is much easier for these 

insiders to hedge their short exchange positions with long positions off the exchange [exchanges 

have different options depending on the nature and size of other markets on their exchanges, so 

exceptions exist]. A short hedge would require large amounts of capital on another exchange, 

generating significant operational risk from regulatory attack surfaces and hackers. This allows 

the perp market makers a significant extra return on the capital needed for market making. 

Below we see that funding rates are positive in bull markets and negative in bear markets. There 

is an asymmetry in that the positive rates in bull markets are significantly greater than the 

negative rates in bear markets. Intuitively, they can get away with gouging their longs in bull 

markets, so they do. In bear markets, they make enough money off their natural short position to 

afford to give a negative funding rate, as this can be a valuable marketing tool (Move your crypto 

position here to make an extra 10%!). This allows the perp market makers a significant extra 

return on the capital needed for market making. While there is a basis on the Bitcoin and ETH 

CME futures market, it is significantly smaller and probably reflects an arb available for 

institutional traders with positions on Binance and the CME. 

BitMex Annualized Funding Rates in Bull and Bear Markets 

 
 *ETH funding rate was adjusted for BTC/ETH covariance effect 

Theoretically, the perp funding rate should be insignificant, if not zero. Neither USDC nor ETH 

has a dividend on the blockchain. The cost of carry for USDC and ETH are identical. ETH may 

have an interest rate if one considers the benefits of staking, but this rate is stable and around 4%, 

implying a negative funding rate (i.e., longs would get paid to compensate for forgone interest). 

There are no supply shocks in tokens to generate option value, such as when oil tankers are full. 

There is nothing like a draught destroying a corn harvest that generates a convenience yield for 

those with corn inventories. To the extent there is hedging pressure generated by natural long or 

short ETH, the only natural positions are stakers and miners who are perforce long, implying a 

negative funding rate (they would pay traders to take their naturally long risk). 

BTC ETH

'17 bull 22% n/a

'18 bear -8% -19%

'6/20-'21 bull 16% 28%

'22bear -2% -8%

avg 4% 4%
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Nothing in the theory of futures basis rates or funding rates implies the large and variable 

funding rates we observe in perp markets. Standard efficient markets theory, the law of iterated 

expectations, implies current sentiment is reflected in spot prices, not forward curves. This is 

why funding rates are generally independent of asset prices, as with equity swap markets or auto 

loans. 

In crypto, perp funding rates are generally strongly positive when the price has risen, as they did 

the second week of March 2023. This is the opposite of what occurs in commodity markets, 

where commodity price spikes correspond to negative funding rates, and price declines 

correspond to positive funding rates. The spot rate moves more than the futures rate in standard 

futures markets, while the pattern is reversed in perp markets. A unique market mechanism is 

generating the funding premium in perps. 

The chart below shows strong predictability between price changes and future funding rates. The 

strong positive correlation for prior returns implies that when prices rise, funding rates tend to 

rise the following day. The contemporaneous and future correlations are almost zero. Funding 

rates are based on recent returns. 

BitMex and Binance FundingRate Correlations 

Perps for USD on BitMex, USDT on Binance. BitMex data from 3/’17, BitMex ETH 

from 9/’18, Binance ETH from 12/’19, Binance BTC from 9/’19. 

 
 

Crypto perp funding rates are best explained by insider manipulation. When prices generate 

windfall profits to long perp traders, they do not mind 50% annualized funding rates the 

following day, which amounts to a mere 0.14% daily charge. It’s like how big winners in Vegas 

often give the dealer a big tip: the house money effect. The 50% funding rate premium on perps 

relative to the regulated and more transparent CME in February 2021 reflects insiders taking 

what they can from abused customers. Market makers, generally short, receive the funding rate 

windfall; the game is rigged as heads-they-win-big, tails-they-win-a-little. 
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The theory that explains the positive return/funding-rate correlation is a typical story that is clear, 

simple, and wrong. It makes no sense when you get into the details. Like the explanation that 

price increases come from ‘more buyers than sellers,’ the idea that long demand shows up in 

futures price premiums has never made sense. 

The perp funding rate reflects insider manipulation of customers, a crypto-crypto cost that, if 

eliminated, would create a superior exchange for those wanting leverage. 

Equity Token Rights and Responsibilities 

The equity balances in the account have two primary purposes. First, they provide an insurance 

fund for potential account insolvencies. Second, as the equity account generates revenue from 

liquidations and trades this aligns the incentives of the equity token holders with the users.  

To keep the contract safe, it needs to be simple. Thus, the only way the equity token holders 

access the contract’s equity is via redemption, which extinguishes the equity tokens and 

generates a pro-rata distribution of the equity account’s token holdings. For example, a 10% 

equity token redemption would get 10% of the equity accounts tokens.  

If the market price of tokens was above the NAV of the equity account, an equity token holder 

would be better off swapping their equity token for some other token off the contract. If the NAV 

of the equity account became too high, so that the expected return on the tokens was too low, this 

would incent redemptions until the expected return increased sufficiently to give it an 

equilibrium return. If the NAV was above the traded price of the equity token, redemption would 

arbitrage this price discrepancy. 

Suppose the NAV of the equity account becomes negative. This could be a disaster that removes 

all future trust in the contract. However, if an outsider thought the contract was still viable, and 

that it was an anomaly, we want to provide a mechanism for salvaging the contract. In that case, 

an outsider can recapitalize the contract and then become a large (e.g., 1/4) owner of the equity 

account, reflecting the value generated by removing this existential risk promptly.  

The equity token holders can propose and vote on a new trading contract. The proposal would 

list the new trading contract’s blockchain address so that people can evaluate its source code. It 

would also require a minimum amount of equity tokens bonded to prevent frivolous or 

mischievous proposals. An unsuccessful vote would destroy some or all the bonded equity tokens 

to prevent frivolous proposals.  
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A trading contract upgrade could occur for various reasons. For example, owners can change the 

base stablecoin from USDC to UST, preventing obsolescence caused by changes in the 

stablecoin market. It could also change merely to add a new coding innovation. In either case, it 

would proceed via the same voting method on the equity token contract. Only one such upgrade 

can be evaluated at a time, giving equity token holders the time and focus on evaluating and 

anticipating this action.  

A successful vote on a contract upgrade would then move the internal stablecoin minting rights 

to the new trading contract, incentivizing existing traders and LPs to move their balances to this 

new exchange contract. Users could then redeem their stablecoins from the old trading contract, 

withdraw the USDC, and take their business to the new stablecoins if desired. 

As the contract’s endogenous stablecoin has only one minter at any time, the stablecoins are not 

at risk from multiple contracts, each with its own risks. While this limits the upside value of the 

equity token, and the size of the stablecoin, the safety generated is essential. If the same 

stablecoin or equity token underlay several contracts, users would have to monitor all of them for 

potential hacks, and some might be conspicuously riskier than others. 

 

 


